The Tangent Plane, Linearization, And Differentials

The Tangent Plane:

Say we have a function z = f{x,y), whose graph is a surface S, and point (x¢,y0) in the
domain of /. If zo = f(x0,y0), then (xo,y0,z0) is a point on the surface S. Letu =< a,b > be a
unit vector. Let T be the tangent line at (xo,y0) in the direction of u. In other words, T'is a
line passing through the point (x¢,y0,z0), tangential to surface S. The slope of line T'is the
derivative of f'at (xo,y0) in the direction of u, D, f{xo,v0). Let us refer to this slope as m.
Then the vector equation of T'is r(¢) = < x0,v0,z0 > + ¢t < a,b,m >.

Let us focus on two particular tangent lines at (x¢,y0), one in the direction of i =< 1,0 > and
the other in the direction of j =< 0,1 >. We shall refer to these tangent lines as 7; and Tj,
respectively.

e The slope of Tj is fi(xo0,y0), SO the vector equation of T; is
l'(t) =< X0,Y0,20 > +1 < l,O,fx(xo,yo) >,

e The slope of Tj is f,(x0,0), SO the vector equation of 7j is
l‘(l) =< X0,)Y0,20 > +1 < 0,1, y(XO,yO) >,

The direction vectors of T; and Tj are < 1,0,f:(x0,y0) >and < 0, 1,£,(x0,y0) >. If these
vectors are positioned at the common tail (xo,10,z0), they determine a unique plane, which
is the tangent plane, 3, assuming f'is differentiable at (xo,y0). To find a normal vector for
this plane, we compute the cross product of the direction vectors of 7; and Tj.
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Although this vector could serve as the normal vector for plane 3, it'll be simpler if we use
the opposite vector, which is < f:(x0,10),f,(x0,50),—1 > (which we would have obtained if we
had computed the cross product in the reverse order).

Now we can write the equation of plane 3. Since it contains the point (x,y0,z0) and has
normal vector < f.(xo,»0),fy(x0,50),—1 >, its equation must be

Se(x0,¥0)(x —x0) +f,(x0,¥0)(y —¥0) + (=1)(z —z0) = 0. We rewrite this as follows:
Sx(x0,y0)(x = x0) +f,(x0,y0) (¥ =y0) —z+2z0 =0

z = fr(x0,y0)(x — x0) + f3(x0,70)(y —y0) +z0  Call this Equation #1

z = fr(x0,y0)x — fe(x0,y0)x0 + f,(x0,¥0)y — fr(X0,¥0)y0 + 2o

z = fx(x0,50)Xx + f,(x0,0)y + zo — fx(x0,0)x0 — f1(x0,10)¥0 Call this Equation #2

As previously discussed, the standard form for the equation of a plane is Ax + By + Cz = D.
For a nonvertical plane (where C + 0), we can solve for z in terms of x and y, giving us



z=(-4)x+(-£)y+£Z. Equation #2 is in this form.

The standard form equation for 3 is f(x0,y0)x +f,(x0,¥0)y — z = fx(x0,¥0)x0 +f,(X0,¥0)y0 — Zo.
Call this Equation #3. Here we have:

A4 = fx(x0,y0)

B = f,(x0,)0)

C=-1

D = fi(x0,y0)x0 + fy(x0,50)y0 — Zo

Let’s return our attention to Equation #1. The form of this equation has a special
significance that you might not realize. To see the significance, let’s go back for a moment
to basic algebra. Recall that in the x,y plane, a line with slope m and passing through the
point (xo,y0) has the equation y — yo = m(x —x¢). This equation is said to be in point, slope
form. 1t could be rewritten into the form y = mx + b, which is slope, y intercept form.
However, there are times when it’s preferable to keep the equation in point, slope form, but
to modify that form as y = m(x —x0) + yo. This was seen in Calculus I. Given a function
flx), its tangent line at the point (xo,y0) has slope f(xo), so the equation of the tangent line
isy = f1(xo)(x —x0) + yo. (This concept was generalized in Calculus Il when we studied
Taylor polynomials. For instance, at the point (x¢,y0), the function has a tangent parabola
whose equation is y = f1(xo)(x — x0)? + f1(x0) (x — x0) + vo. We could go on to formulate
tangent cubics, tangent quartics, and so on.)

Anyway, if we take the equation y = m(x — xo) + yo and “crank it up” an extra dimension, we
getz = m;(x—x0) + m2(y — yo) +z0. This new equation represents a plane rather than a line.
Call this plane . Just as (xo,y0) was a point on the line y = m(x — xo) + vo, (x0,)0,20) iS @
point on plane . What is the significance of the coefficients m, and m,, if any? The
concept of slope is not directly applicable to a plane, but it is indirectly applicable. If we
intersect @ with the vertical plane y = y, (which is parallel to the x,z plane), we obtain a line
whose equation is z = m;(x — x¢) + zo, and m, is the slope of this line. On the other hand, if
we intersect g with the vertical plane x = x, (which is parallel to the y,z plane), we obtain a
line whose equation is z = m»(y — yo) + zo, and m, is the slope of this line. Thus, m; and m,
are the slopes of two traces (or cross sections) of the plane . On the basis of this insight,
it makes sense for us to refer to the equation z = m;(x — x¢) + m2(y — yo) + zo as point, slope
form for the equation of the plane.

Now we see that Equation #1 is the equation of the tangent plane in point, slope form.

While we're at i, let’s take a further look at the equation of a nonvertical plane in the form
z=(-%)x+(-£)y+ Z. Thisis the three-dimensional version of the two-dimensional
equation y = mx + b, which is the equation of a nonvertical line in the x,y plane. Technically,
the y intercept of this line is the point (0,5), but, speaking casually, we can say the y
intercept is . That’s why y = mx + b is referred to as the slope, y intercept form of the
equation. Analogously, the z intercept of the plane z = (—£)x + (-2 )y + % is the point

(0,0, %), but, speaking casually, we can say the z intercept is %. What is the significance
of the coefficients -4 and —Z., if any? Let us refer to the plane z = (-£)x + (-2)y + & as
. If we intersect @ with the vertical plane y = 0 (which is the x,z plane), we obtain a line
whose equation is z = (—%)x + %, and —% is the slope of this line. On the other hand, if we



intersect @ with the vertical plane x = 0 (which is the y,z plane), we obtain a line whose
equation is z = (-Z£)y + £, and - £ is the slope of this line. Thus, —<- and —£ are the
slopes of two traces (or cross sections) of the plane . On the basis of this insight, it
makes sense for us to refer to the equation z = (—%)x + (—%)y + % as slope, z intercept
form for the equation of the plane.

In summary, the equation of the tangent plane can be written in three major forms:

® z = f.(x0,y0)(x —x0) +f1(x0,50)(y — o) + 2o is point, slope form.

® z = fi(x0,y0)x +f,(x0,v0)y + zo — fx(x0,¥0)x0 — [, (x0,¥0)y0 iS slope, z intercept form.
o fi(x0,y0)x + fy(x0,50)y —z = fx(x0,10)Xx0 + f1(x0,¥0)y0 — 2o is standard form.

All three are worthwhile, but point, slope form is the preferred form.

As previously discussed, the function f{(x,y) = x*> + y? has a tangent plane at (2,3) and its
equation is 4x + 6y —z = 13 in standard form. We have noted that the left side of the
equation is fx(2,3)x + £,(2,3)y — z, which is consistent with our general formula, where the left
side is fx(x0,y0)x + f,(x0,y0)y —z. The general formula says the right side of the equation
should befx(xo,yo)xo +fy(xo,yo)yo — 20, i.e.,fx(2,3)2 +fy(2,3)3 —f(2,3), which is

(4)2 + (6)3 — 13, which does work out to be 13.

For the function f(x,y) = x? + 32, the tangent plane at (2,3) has point, slope equation
z=4(x-2)+6(y—3)+ 13, and it has slope, z intercept equation z = 4x + 6y — 13.

The right side of the tangent plane’s equation in standard form can be expressed as
VAx0,y0) * < x0,y0 > —z0. The left side can be expressed as Vf(xo,y0) * < x,y > —z. Hence,
the standard form equation can be written as Vf(xo,y0) « < x,y > —z = Vf{x0,y0) *

< x0,¥0 > —zo. In fact, we could rewrite this as follows:

VAxo0,v0) < x,¥y > =Vflxo,y0) + < X0,y0 >=2z— 20

VAxo0,y0) * (< x,y > — < X0,Y0 >) =z—2

VAx0,y0) * < X —X0,y —Yo >=2z—20 Call this the gradient vector form.

In the case of the function f{(x,y) = x> + y2, the gradient vector form for the equation of the
tangent plane at (2,3) is< 4,6 > +<x-2,y—-3 >=2z-13.

As previously discussed, the function f{(x,y) = x*> + y? has gradient vector < —14,26 > at the
point (-7,13). Since zy = f{-7,13) = 218, the tangent plane at (-7, 13) has the following
equations:

o <—-1426>-<x+7,y—13>=2z-218 in gradient vector form.

o z=—-14(x+7)+26(y—13)+218 in point, slope form.

e z=—-14x+26y—-218 in slope, z intercept form.

o —14x+26y—z=218 in standard form.

Linearization:

Recall that in two dimensions, a linear function is a function whose graph is a nonvertical



line with slope m, and whose equation, in slope, y intercept form, is y = mx + b. In three
dimensions, a linear function is a function whose graph is a nonvertical plane, and whose
equation is z = (-4 )x + (-Z)y + & in slope, z intercept form, or

z =m(x —xo) + ma(y — yo) + zo in point, slope form. A linear function in three dimensions is
commonly named L(x,y). Thus, we may write L(x,y) = (-£)x+ (-Z)y+ £, or

L(x,y) = mi(x —x0) + m2(y — yo) + 2o.

If the function z = f(x,y) is differentiable at (x¢,y0), then it has a tangent plane at this point,
3, which is the graph of a linear function, L(x,y). We call this function the linearization of f
at (x0,y0). We have:

o L(x,y) = fi(x0,y0)(x —x0) + £, (x0,y0)(y = ¥0) + zo
o L(x,y) = fi(x0,10)x + fy(x0,10)y + zo — fx(x0,Y0)X0 — f3(X0,10)Y0

The linearization of fat (x¢,y0) is also called the linear approximation of the function at
(x0,¥0)-

The linearization of f{x,y) = x> + y? at (2,3) is L(x,y) = 4(x —2) + 6(y — 3) + 13, or
L(x,y) =z =4x+ 6y —13.

For the function f(x,y) = 7x* — 5xy + 2)3, fi(x,y) = 14x — 5y and f,(x,y) = —5x + 6y%. At the
point (2,1), we have zy = f{2,1) = 20 and VA2,1) =< 23,-4 >, so the tangent plane’s
equationis< 23,4 >+.<x-2,y—1>=2z-20,0rz=23(x-2)—-4(y—1)+20, or

z = 23x — 4y — 22. Hence, the function’s linearization at (2,1) is

L(x,y) =23(x—-2)—-4(y—1) + 20, or L(x,y) = 23x — 4y — 22.

Differentials:

Say we have a function z = f{x,y), whose linearization at (xo,y¢) is

L(x,y) = fx(x0,50)(x —x0) + f,(x0,v0)(y — yo) + zo. By definition, zo = f{xo,y0). Notice that
L(x0,y0) =0+ 0+z9 =zo. Thus, L(xo,y0) = f(x0,y0). If we refer to the graph of f'as surface
S, and to the graph of L as plane 3, then the equation L(xo,y0) = f{xo,y0) means that S and
3 coincide at the point (xo,y0,z0). This is actually quite trivial. All we are saying is that the
graph of the function and its tangent plane coincide at the point of tangency.

When (x,y) # (x0,10), L(x,y) serves as an approximation to f(x,y). The approximation is
generally good when (x,y) is close to (x¢,y0), and is generally poor when (x,y) is far away
from (xo,y0).

For any point (x,y) different from (xo,y0), let dx be the deviation of x from x,, and let dy be
the deviation of y from y,. In other words, dx = x —xo and dy = y — y,. It follows that
x=xo+dxandy = yy+dy, and so (x,y) = (xo + dx, yo + dy).

When (x,y) changes from (xo,y0) to (xo + dx, yo + dy), f(x,y) changes from f{(x¢,y0) = zo to
flxo + dx, yo +dy). We denote this change as Af.

Af = fixo +dx, yo +dy) — flxo,y0) = flxo +dx, yo +dy) — zo.



When (x,y) changes from (xo,y0) to (xo + dx, yo + dy), L(x,y) changes from L(x¢,y0) = zo to
L(xo + dx, yo +dy). We denote this change as AL.

AL = L(xo + dx, yo +dy) — L(x0,y0) = L(x0 + dx, yo + dy) — zo.
Just as L(x,y) = f(x,y), likewise AL = Af.

L(xo +dx, yo + dy) = fc(x0,¥0)(x0 + dx —x0) + f1(x0,y0) o +dy —yo) +z0 =
Jx(xo0,¥0)dx + f,(x0,y0)dy + zo.

So AL = fi(x0,y0)dx + f,,(x0,v0)dy + zo — zo = fr(x0,¥0)dx + f,(x0,y0)dy. Note that this could
also be expressed as Vf{xo,yo) * < dx,dy >.

We define this quantity to be the differential of the function f, denoted df. By definition,
df = AL. Hence df = Af.

Since we have z = f(x,y), we may write dz in place of df.
All of this is analogous to what we do in Calculus I...

Say we have a function, y = f{x). At xo, the slope of the tangent line is f1(xo). If yo = f{xo),
then the tangent line has the equation y — yo = f1(xo)(x — x0), or y = fl(xo)(x —x0) + vo. We
may think of this as a linear function, L(x) = fI(xo)(x — x0) + y0, known as the linearization of
f(x) at the point x,.

Let dx be the deviation of x from xo. dx = x — x¢, SO x = x¢ + dx.

When x changes from x, to xo + dx, f(x) changes from f(xo) = yo to f{xo + dx). We denote
this change as Af. Af == flxo + dx) — fixo) = fxo + dx) — yo.

When x changes from x, to xo + dx, L(x) changes from L(x¢) = yo to L(xo + dx). We denote
this change as AL. AL = L(xo + dx) — L(xo) = L(xo + dx) —yo. But
L(xo +dx) = fl(x0)(xo + dx — x0) +yo = fl(x0)dx + yo, SO

AL = fi(xo)dx + yo —yo = fl(x0)dx.

We define this quantity to be the differential of the function £, denoted df, i.e., df = f1(xo)dx.
By definition, df = AL. Hence df =~ Af.

Since we have y = f(x), we may write dy in place of df.

To illustrate, consider f{x,y) = x? + y*, whose linearization at (2,3) is

L(x,y) = 4(x—2) + 6(y — 3) + 13. Both functions have a value of 13 at (2,3). At (1,5), the
values of fand L will differ. f{(1,5) = 26, whereas L(1,5) = 21. 21 is a poor approximation to
26, but that is because (1, 5) is relatively far away from (2,3)-the distance is /5 ~ 2.24.
Anyway, when (x,y) varies from (2,3) to (1,5), we have Af = 26— 13 = 13 and



AL =21 -13 = 8. Again, 8 is a poor approximation to 13, but this is because of the
relatively large distance between (2,3) and (1,5). Here we have dx = -1 and dy = 2. Note
thatdf = AL =Vf(2,3) + < -1,2>=<4,6>+<-1,2>=-4+12 = 8.

Now suppose we have a smaller deviation from (2,3), let’s say to the point (1.8,3.4).
f(1.8,3.4) = 14.8, whereas L(1.8,3.4) = 14.6. 14.6 is a good approximation to 14.8. When
(x,y) varies from (2,3) to (1.8,3.4), we have Af = 14.8—13 = 1.8 and AL = 14.6 — 13 = 1.6.
1.6 is a good approximation to 1.8. Here we have dx = —0.2 and dy = 0.4. Note that

df = AL =Vf(2,3) + < -0.2,0.4 >=<4,6 > + < —0.2,0.4 >=-0.8+2.4 = 1.6.



